Mismatch repair-induced meiotic recombination requires the pms1 gene product.

نویسندگان

  • R H Borts
  • W Y Leung
  • W Kramer
  • B Kramer
  • M Williamson
  • S Fogel
  • J E Haber
چکیده

The presence of multiple heterologies in a 9-kilobase (kb) interval results in a decrease in meiotic crossovers from 26.0% to 10.1%. There is also an increase from 3.5% to 11.1% in gene conversions and ectopic recombinations between the flanking homologous MAT loci. The hypothesis that mismatch repair of heteroduplex DNA containing several heterologies would lead to a second round of recombination has now been tested by examining the effect of a mutation that reduces mismatch correction. The repair-defective pms1-1 allele restores the pattern of recombination to nearly that seen in congenic diploids without the heterologies. Mismatch repair-induced recombination causes a significant increase in MAT conversions and ectopic recombination events with as few as two heterozygosities separated by 0.3-0.7 kb, but not when the mismatches are separated by greater than 1 kb. The frequency of these events depends on both the number and position of the heterozygosities relative to the flanking homologous MAT loci used to detect the events. The creation of recombinogenic lesions by mismatch repair in yeast could be analogous to the creation of recombinogenic lesions in dam- Escherichia coli. We suggest that the repair of heteroduplex DNA containing multiple mismatches may produce chromosomal rearrangements and gamete inviability when naturally polymorphic chromosomes undergo meiotic recombination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CYS3, a hotspot of meiotic recombination in Saccharomyces cerevisiae. Effects of heterozygosity and mismatch repair functions on gene conversion and recombination intermediates.

We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair ...

متن کامل

Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae.

The yeast Saccharomyces cerevisiae encodes a set of genes that show strong amino acid sequence similarity to MutS and MutL, proteins required for mismatch repair in Escherichia coli. We examined the role of MSH2 and PMS1, yeast homologs of mutS and mutL, respectively, in the repair of base pair mismatches formed during meiotic recombination. By using specifically marked HIS4 and ARG4 alleles, w...

متن کامل

Alleles of the yeast Pms1 mismatch-repair gene that differentially affect recombination- and replication-related processes.

Mismatch-repair (MMR) systems promote eukaryotic genome stability by removing errors introduced during DNA replication and by inhibiting recombination between nonidentical sequences (spellchecker and antirecombination activities, respectively). Following a common mismatch-recognition step effected by MutS-homologous Msh proteins, homologs of the bacterial MutL ATPase (predominantly the Mlh1p-Pm...

متن کامل

Efficient incorporation of large (>2 kb) heterologies into heteroduplex DNA: Pms1/Msh2-dependent and -independent large loop mismatch repair in Saccharomyces cerevisiae.

DNA double-strand break (DSB) repair in yeast is effected primarily by gene conversion. Conversion can conceivably result from gap repair or from mismatch repair of heteroduplex DNA (hDNA) in recombination intermediates. Mismatch repair is normally very efficient, but unrepaired mismatches segregate in the next cell division, producing sectored colonies. Conversion of small heterologies (single...

متن کامل

Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae.

DNA mismatches are generated when heteroduplexes formed during recombination involve DNA strands that are not completely complementary. We used tetrad analysis in Saccharomyces cerevisiae to examine the meiotic repair of a base-base mismatch and a four-base loop in a wild-type strain and in strains with mutations in genes implicated in DNA mismatch repair. Efficient repair of the base-base mism...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 124 3  شماره 

صفحات  -

تاریخ انتشار 1990